Spatiotemporal distribution, risk levels, and transport variations in neonicotinoids and fipronil and its metabolites cross a river-to-sea continuum.

J Hazard Mater

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.

Published: September 2024

Neonicotinoids (NEOs) and fipronil are widely used in pest control, but their spatiotemporal distribution and risk levels in the "river-estuary-bay" system remain unclear. Between 2018 and 2021, 148 water samples from rivers to inshore and offshore seawater in Laizhou Bay, China were collected to investigate the presence of eight NEOs and fipronil and its metabolites (FIPs). Significant seasonal variations in NEOs were observed under the influence of different cultivation practices and climatic conditions, with higher levels in the summer than in the spring. The average concentrations of total neonicotinoids (ΣNEOs) and ∑FIPs decreased from rivers (63.64 ng/L, 2.41 ng/L) to inshore (22.62 ng/L, 0.14 ng/L) and offshore (4.48 ng/L, 0.10 ng/L) seawater of Laizhou Bay. The average concentrations of ΣNEOs decreased by 85.3 % from 2018 to 2021. The predominant insecticides in the study area were acetamiprid, thiamethoxam, imidacloprid, and fipronil sulfone, with a gradual shift toward low-toxicity and environmentally friendly species over time. Influenced by agricultural intensity, ∑NEOs were mostly distributed in the Yellow River, Xiaoqing River, and their estuaries, where they pose chronic ecological risks. However, FIP exhibited high risk in certain rivers and sewage treatment plants owing to the use of animal repellents or landscape gardening insecticides. This study provides evidence of the transfer of NEOs and FIPs from rivers to the ocean and also clarifies their transition dynamics and changes in risk levels from rivers to oceans. Additionally, the study offers data support for identifying critical pesticide control areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135297DOI Listing

Publication Analysis

Top Keywords

risk levels
12
spatiotemporal distribution
8
distribution risk
8
fipronil metabolites
8
neos fipronil
8
2018 2021
8
seawater laizhou
8
laizhou bay
8
average concentrations
8
insecticides study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!