Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous studies have highlighted the correlation between metal intake and deteriorated pulmonary function, emphasizing its pivotal role in the progression of Chronic Obstructive Pulmonary Disease (COPD). However, the efficacy of traditional models is often compromised due to overfitting and high bias in datasets with low-level exposure, rendering them ineffective in delineating the contemporary risk trends associated with pulmonary diseases. To address these limitations, we embarked on developing advanced, interpretable models, crucial for elucidating the intricate mechanisms of metal toxicity and enriching the domain knowledge embedded in toxicity models. In this endeavor, we scrutinized extensive, long-term metal exposure datasets from NHANES to explore the interplay between metal and pulmonary functionality. Employing a variety of machine-learning approaches, we opted for the "Mixer of Experts" model for its proficiency in identifying a myriad of toxicological trends and sensitivities. We conceptualized and illustrated the TSAP (Toxicity Score at Population-level), a metal interpretable scoring system offering performance nearly equivalent to the amalgamation of standard interpretable methods addressing the "black box" conundrum. This streamlined, bifurcated procedural analysis proved instrumental in discerning established risk factors, thereby uncovering Tungsten as a novel contributor to COPD risk. SYNOPSIS: TSAP achieved satisfied performance with transparent interpretability, suggesting tungsten intake need further action for COPD prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!