In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → *, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.6 and 0.3 eV for core excitation energies of the second- and third-row atoms of the tested small molecules, respectively. We found that the inclusion of the short-range interelectronic HF exchange at a distance ranging from 0.2 to 0.6 a.u. contributes to the increase of performances on 1s orbital energy calculations of the second-row atoms, while the inclusion of more short-range interelectronic HF exchange at a distance ranging from 0 to 0.2 a.u. does to the increase of performance on 1s orbital energy calculations of the third-row atoms. It is notable that all of these improvements were accomplished using flexible Gaussian attenuating HF exchange inclusion. LC2gau-core-BOP shows deviations of less than 0.8 eV from experimental values for all of the core-excitation energies of the tested medium-size molecules consisting of thymine, oxazole, glycine, and dibenzothiophene sulfone. Moreover, by optimizing one parameter of the OP correlation functional, LC2gau-core-BOP provides atomization energies over the G3 test set with an accuracy comparable to that of B3LYP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00651DOI Listing

Publication Analysis

Top Keywords

third-row atoms
16
energy calculations
12
short-range interelectronic
12
gaussian attenuating
12
core-excitation energies
12
high accuracy
8
accuracy core-excitation
8
second- third-row
8
energies orbitals
8
second-row atoms
8

Similar Publications

Article Synopsis
  • - The X2MH6 family, including compounds like Mg2IrH6 and Ca2IrH6, has potential for high-temperature superconductivity due to their unique electronic structures and coordination by hydrogen.
  • - Mg2IrH6 is predicted to exhibit superconducting properties similar to cuprates, thanks to the coupling induced by the vibrations of IrH64- anions, while Ca2IrH6 fails to show such properties due to preferred back-donation to low-lying d-orbitals in calcium.
  • - The study suggests that high critical temperatures in superconductors are likely achievable with second or third row metal atoms, and this understanding could inform future research on superconductivity in related systems.
View Article and Find Full Text PDF

In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → *, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF

The new versions of the Pisa composite scheme introduced in the present paper are based on the careful selection of different quantum chemical models for energies, geometries, and vibrational frequencies, with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, the computation of accurate electronic energies has been further improved introducing more reliable complete basis set extrapolations and estimation of core-valence correlation, together with improved basis sets for third-row atoms. Furthermore, the reduced-cost frozen natural orbital (FNO) model has been introduced and validated for large molecules.

View Article and Find Full Text PDF

Several cycloreversion reactions of the retro-Diels-Alder type were computationally assessed to understand their quantum tunneling (QT) reactivity. N, CO, and other leaving groups were considered based on their strong exothermicity, as it reduces their thermodynamic and kinetic stabilities. Our results indicate that for many of these reactions, it is essential to take into account their QT decomposition rate, which can massively weaken their molecular stability and shorten their half-lives even at deep cryogenic temperatures.

View Article and Find Full Text PDF

The correlation consistent basis sets (cc-pVnZ with n = D, T, Q, 5) for the Ga-Br elements have been redesigned, tuning the sets for use for density functional approximations. Steps to redesign these basis sets for an improved correlation energy recovery and efficiency include truncation of higher angular momentum functions, recontraction of basis set coefficients, and reoptimization of basis set exponents. These redesigned basis sets are compared with conventional cc-pVnZ basis sets and other basis sets, which are, in principle, designed to achieve systematic improvement with respect to increasing basis set size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!