Reduced Density Matrix Formulation of Quantum Linear Response.

J Chem Theory Comput

Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark.

Published: August 2024

The prediction of spectral properties via linear response (LR) theory is an important tool in quantum chemistry for understanding photoinduced processes in molecular systems. With the advances of quantum computing, we recently adapted this method for near-term quantum hardware using a truncated active space approximation with orbital rotation, named quantum linear response (qLR). In an effort to reduce the classic cost of this hybrid approach, we here derive and implement a reduced density matrix (RDM) driven approach of qLR. This allows for the calculation of spectral properties of moderately sized molecules with much larger basis sets than so far possible. We report qLR results for benzene and -methyloxirane with a cc-pVTZ basis set and study the effect of shot noise on the valence and oxygen K-edge absorption spectra of HO in the cc-pVTZ basis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00574DOI Listing

Publication Analysis

Top Keywords

linear response
12
reduced density
8
density matrix
8
quantum linear
8
spectral properties
8
cc-pvtz basis
8
quantum
5
matrix formulation
4
formulation quantum
4
response prediction
4

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.

View Article and Find Full Text PDF

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.

Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.

View Article and Find Full Text PDF

Objectives: This study aims to explore the relationship between the combined experiences of COVID-19 infection in individuals and their family members and the resulting fear of COVID-19, with a focus on the severity of symptoms and various sociodemographic factors.

Design: Longitudinal survey study.

Setting: The Japan COVID-19 and Society Internet Survey (JACSIS), a large-scale web panel survey administered in Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!