Textile-Based Membraneless Microfluidic Double-Inlet Hybrid Microbial-Enzymatic Biofuel Cell.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Published: August 2024

This study reports the development of a textile-based colaminar flow hybrid microbial-enzymatic biofuel cell. MR-1 was used as a biocatalyst on the anode, and bienzymatic system catalysts based on glucose oxidase and horseradish peroxidase were applied on an air-breathing cathode to address the overpotential loss in a body-friendly way. A single-layer Y-shaped channel configuration with a double-inlet was adopted. Microchannels of biofuel cells were patterned by silk screen printing with Ecoflex to maintain the flexibility of textile substrates without harm to the human body. The electrodes were fabricated with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and a mixture of multiwalled carbon nanotubes and single-walled carbon nanotubes by screen printing. The effects of electrode materials, catalyst type, catalyst concentration, and glucose concentration in the catholyte were investigated to optimize the fuel cell performance. The peak power density (44.9 μW cm) and maximum current density (388.9 μA cm) of the optimized hybrid biofuel cell were better than those of previously reported textile- or paper-substrate microscale single microbial fuel cells. The developed biofuel cell will be a useful platform as a microscale power source that is harmless to the environment and living organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10139DOI Listing

Publication Analysis

Top Keywords

biofuel cell
16
hybrid microbial-enzymatic
8
microbial-enzymatic biofuel
8
screen printing
8
carbon nanotubes
8
biofuel
5
cell
5
textile-based membraneless
4
membraneless microfluidic
4
microfluidic double-inlet
4

Similar Publications

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.

View Article and Find Full Text PDF

GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential.

Mar Drugs

December 2024

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, UNOVA University of Lisbon, 2829-516 Caparica, Portugal.

This study investigated the fatty acids (FA) profile of 54 actinomycete strains isolated from marine sediments collected off the Portugal continental coast, specifically from the Estremadura Spur pockmarks field, by GC/MS. Fatty acid methyl esters (FAMEs) were prepared from the ethyl acetate lipidic extracts of these strains and analyzed by gas chromatography-mass spectrometry (GC/MS), with FA identification performed using the NIST library. The identified FAs varied from C12:0 to C20:0, where 32 distinct FAs were identified, including 7 branched-chain fatty acids (BCFAs), 9 odd-chain fatty acids (OCFAs), 8 monounsaturated fatty acids (MUFAs), 6 saturated fatty acids (SFAs), 1 polyunsaturated fatty acid (PUFA), and 1 cyclic chain fatty acid (CCFA).

View Article and Find Full Text PDF

Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.

View Article and Find Full Text PDF

Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!