The early identification of an individual's dementia risk is crucial for disease prevention and the design of insurance products in an aging society. This study aims to accurately predict the future incidence risk of dementia in individuals by leveraging the advantages of neural networks. This is, however, complicated by the high dimensionality and sparsity of the International Classification of Diseases (ICD) codes when utilizing data from Taiwan's National Health Insurance, which includes individual profiles and medical records. Inspired by the click-through rate (CTR) problem in recommendation systems, where future user behavior is predicted based on their past consumption records, we address these challenges with a multimodal attention network for dementia (MAND), which incorporates an ICD code embedding layer and multihead self-attention to encode ICD codes and capture interactions among diseases. Additionally, we investigate the applicability of several CTR methods to the dementia prediction problem. MAND achieves an AUC of 0.9010, surpassing traditional CTR models and demonstrating its effectiveness. The highly flexible pipelined design allows for module replacement to meet specific requirements. Furthermore, the analysis of attention scores reveals diseases highly correlated with dementia, aligning with prior research and emphasizing the interpretability of the model. This research deepens our understanding of the diseases associated with dementia, and the accurate prediction provided can serve as an early warning for dementia occurrence, aiding in its prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3438885 | DOI Listing |
Nat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computing and Information Systems, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
Urban mobility prediction is crucial for optimizing resource allocation, managing transportation systems, and planning urban development. We propose a novel framework, GeoTemporal LSTM (GT-LSTM), designed to address the intricate spatiotemporal dynamics of urban environments. GT-LSTM integrates temporal dependencies with geographic information through a multi-modal approach that combines attention mechanisms and Recurrent Neural Networks (RNNs).
View Article and Find Full Text PDFEur J Surg Oncol
December 2024
Department of General Surgery, The Affiliated Hospital of Qingdao University, Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, Shandong, China. Electronic address:
Background: Population ageing and cancer burden are important global public health problems that pose unprecedented threats to health systems worldwide. Frailty is a common health problem among elderly patients with cancer. In recent years, the use of prehabilitation to improve frailty has received widespread attention.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:
The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China.
Multi-modal medical images are important in tumor lesion detection. However, the existing detection models only use single-modal to detect lesions, a multi-modal semantic correlation is not enough to consider and lacks ability to express the shape, size, and contrast degree features of lesions. A Cross Modal YOLOv5 model (CMYOLOv5) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!