The development of mechanically robust, chemically stable, and yet recyclable polymers represents an essential undertaking in the context of advancing a circular economy for plastics. Here, we introduce a novel cleavable β-(1,3-dioxane)ester (DXE) linkage, synthesized through the catalyst-free reaction of β-ketoester and 1,3-diol, to cross-link poly(vinyl alcohol) (PVA) for the formation of high-performance thermosets with inherent chemical recyclability. PVA, modified with β-ketoester groups through the transesterification reaction with excess tert-butyl acetoacetate, undergoes cross-linking reactions with the unmodified 1,3-diols within PVA itself upon thermal treatment. The cross-linking architecture improves PVA's mechanical properties, with Young's modulus and toughness that can reach up to 656 MPa and 84 MJ cm, i.e. approximately 3- and 12-fold those of linear PVA, respectively. Thermal treatment of the cross-linked PVA polymers under acid conditions leads to deconstruction of the networks, enabling the excellent recovery (>90 %) of PVA. In the absence of either thermal or acidic treatment, the cross-linked PVA maintains its dimensional stability. We show that the recovery of PVA is also possible when the treatment is performed in the presence of other plastics commonly found in recycling mixtures. Furthermore, PVA-based composites comprising carbon fibers and activated charcoal cross-linked by the DXE linkages are also shown to be recyclable with recovery of the PVA and the fillers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410624 | DOI Listing |
Gels
December 2024
National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani 12120, Thailand.
Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD's inherent instability and low bioavailability.
View Article and Find Full Text PDFGels
December 2024
Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA.
This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability.
View Article and Find Full Text PDFGels
December 2024
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.
View Article and Find Full Text PDFGels
December 2024
Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).
View Article and Find Full Text PDFGels
December 2024
Quantum Technologies Research Center, Science and Research Branch, Islamic, Azad University, Tehran 1477893855, Iran.
Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!