Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cigarette smoking is associated with elevated risk of disease and mortality and contributes to heavy healthcare-related economic burdens. The nucleus accumbens is implicated in numerous reward-related behaviors, including reinforcement learning and incentive salience. The established functional connectivity of the accumbens includes regions associated with motivation, valuation, and affective processing. Although the high comorbidity of cigarette smoking with drinking behaviors may collectively affect brain activity, there could be independent effects of smoking in alcohol use disorder that impact brain function and behavior. We hypothesized that smoking status, independent of alcohol use, would be associated with aberrations of nucleus accumbens functional connectivity to brain regions that facilitate reward processing, salience attribution, and inhibitory control. Resting state functional magnetic resonance imaging data from thirty-one nonsmokers and nineteen smoking individuals were analyzed using seed-based correlations of the bilateral accumbens with all other brain voxels. Statistical models accounted for drinks consumed per week. The smoking group demonstrated significantly higher functional connectivity between the left accumbens and the bilateral insula and anterior cingulate cortex, as well as hyperconnectivity between the right accumbens and the insula. Confirmatory analyses using the insula and cingulate clusters generated from the original analysis as seed regions reproduced the hyperconnectivity in smokers between the bilateral insular regions and the accumbens. In conclusion, smoking status had distinct effects on neural activity; hyperconnectivity between the accumbens and insula in smokers may reflect enhanced encoding of the reinforcing effects of smoking and greater orientation toward smoking-associated stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-024-00903-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!