Mitochondrial Transfer Between Mesenchymal Stem Cells and Cancer Cells.

Methods Mol Biol

Department of Experimental Medicine, Histology and Embryology Section, University of Campania "L. Vanvitelli", Naples, Italy.

Published: August 2024

Mitochondrial transfer (MT) is a biological process that allows a donor cell to horizontally share its own mitochondria with a recipient cell. Mitochondria are highly dynamic membrane-bound sub-cellular organelles prominently involved in the regulation of the cell energy balance, calcium homeostasis, and apoptotic machinery activation. They physiologically undergo fusion and fission processes in response to the cell requirement, with a continuous morphological re-arrangement. This structural and functional plasticity is at the basis of the MT, described in tissue regeneration, cardiac and neurological diseases, as well as in cancer. Here, the MT has been observed in the tumor micro-environment (TME) from the adipose-derived stem cells (ASCs) to the cancer cells, eventually reverting the lack of the mitochondria respiration function, or enhancing their motility and drug resistance. In this chapter, we outline some key protocols for evaluating this exciting phenomenon of MT. These methodological and technical approaches are very important, considering all the limitations that scientists constantly face, especially in this field of the research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3995-5_4DOI Listing

Publication Analysis

Top Keywords

mitochondrial transfer
8
stem cells
8
cancer cells
8
transfer mesenchymal
4
mesenchymal stem
4
cells
4
cells cancer
4
cells mitochondrial
4
transfer biological
4
biological process
4

Similar Publications

Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses. However, detailed mechanisms of such processes remain unclear.

View Article and Find Full Text PDF

Picoxystrobin causes mitochondrial dysfunction in earthworms by interfering with complex enzyme activity and binding to the electron carrier cytochrome c protein.

Environ Pollut

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:

Picoxystrobin (PICO) poses a great threat to earthworms due to its widespread use in agriculture and its stability in soil. Mitochondria may be a sensitive target organ for the toxic effects of PICO on worms. Therefore, evaluating the effect of PICO on mitochondria can further understand the toxic mechanism of PICO to earthworms.

View Article and Find Full Text PDF

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitochondrial genome of red raspberry (Rubus idaeus L.) revealing repeat-mediated recombination and gene transfer.

BMC Plant Biol

January 2025

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.

Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!