The spread of microbial resistance is a threat to public health. In this study, the anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-loaded magnetic nanoparticles (FeONPs@EA) against beta-lactamase producing Escherichia coli isolates have been investigated. The effects of FeO NPs@EA on the growth inhibition of E. coli isolates were determined by disc diffusion method and determining the minimum inhibitory concentration was done using broth micro-dilution method. The anti-biofilm effect of nanoparticles was investigated using the microplate method. The efflux pump inhibitory effect of nanoparticles was investigated using cart-wheel method and by investigating the effect of nanoparticles on acrB and tolC genes expression levels. FeO NPs@EA showed anti-bacterial effects against test bacteria, and the MIC of these nanoparticles varied from 0.19 to 1.56 mg/mL. These nanoparticles caused a 43-62% reduction in biofilm formation of test bacteria compared to control. Furthermore, efflux pump inhibitory effect of these nanoparticles was confirmed at a concentration of 1/8 MIC, and the expression of acrB and tolC genes decreased in bacteria treated with 1/4 MIC FeO NPs@EA. According to the results, the use of nanoparticles containing ellagic acid can provide a basis for the development of new treatments against drug-resistant E. coli. This substance may improve the concentration of antibiotics in the bacterial cell and increase their effectiveness by inhibiting the efflux in E. coli isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-024-00560-4 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFEnviron Res
January 2025
INRAE, University of Montpellier, LBE, Av. des Étangs, 11100 Narbonne, France.
Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
Regulatory elements controlling gene expression fine-tune bacterial responses to environmental cues, including antimicrobials, to optimize survival. Acinetobacter baumannii, a pathogen notorious for antimicrobial resistance, relies on efficient efflux systems. Though the role of efflux systems in antibiotic expulsion are well recognized, the regulatory mechanisms controlling their expression remain understudied.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa.
The challenges of antimicrobial resistance (AMR) to human health have pushed for the discovery of a new antibiotics agent from natural products. Cyanobacteria are oxygen-producing photosynthetic prokaryotes found in a variety of water habitats. Secondary metabolites are produced by cyanobacteria to survive extreme environmental stress factors, including microbial competition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!