Tuning the Locally Enhanced Electric Field Treatment (LEEFT) between Electrophysical and Electrochemical Mechanisms for Bacteria Inactivation.

Environ Sci Technol

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Published: August 2024

Efficient drinking water disinfection methods are critical for public health. Locally enhanced electric field treatment (LEEFT) is an antimicrobial method that uses sharp structures, like metallic nanowires, to enhance the electric field at tips and cause bacteria inactivation. Electroporation is the originally designed mechanism of LEEFT. Although oxidation is typically undesired due to byproduct generation and electrode corrosion, it can enhance the overall disinfection efficiency. In this work, we conduct an operando investigation of LEEFT, in which we change the electrical parameters to tune the mechanisms between electrophysical electroporation and electrochemical oxidation. Pure electroporation (i.e., without detectable oxidation) could be achieved under a duty cycle of ≤0.1% and a pulse width of ≤2 μs. Applying 2 μs pulses at 7-8 kV/cm and 0.1% duty cycle results in 80-100% bacteria inactivation with pure electroporation. A higher chance of oxidation is found with a higher duty cycle and a longer pulse width, where the antimicrobial efficiency could also be enhanced. For water with a higher conductivity, a higher antimicrobial efficiency can be achieved under the same treatment conditions, and electrochemical reactions could be induced more easily. The findings shown in this work improve the fundamental understanding of LEEFT and help optimize the performance of LEEFT in real applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339917PMC
http://dx.doi.org/10.1021/acs.est.4c00503DOI Listing

Publication Analysis

Top Keywords

electric field
12
bacteria inactivation
12
duty cycle
12
locally enhanced
8
enhanced electric
8
field treatment
8
treatment leeft
8
pure electroporation
8
pulse width
8
antimicrobial efficiency
8

Similar Publications

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Detection of Extracochlear Electrodes Using Electrical Field Imaging (EFI).

Otol Neurotol

February 2025

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.

Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).

Study Design: Retrospective cohort study.

Setting: Tertiary academic medical center.

View Article and Find Full Text PDF

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.

Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!