One of the daunting challenges in modern low temperature scanning tunneling microscopy (STM) is the difficulty of combining atomic resolution with cryogen-free cooling. Further functionality needs, such as ultra-high vacuum (UHV), high magnetic field (HF), and compatibility with μm-sized samples, pose additional challenges to an already ambitious build. We present the design, construction, and performance of a cryogen-free, UHV, low temperature, and high magnetic field system for modular STM operation. An internal vibration isolator reduces vibrations in this system, allowing for atomic resolution STM imaging while maintaining a low base temperature of ∼4 K and magnetic fields up to 9 T. Samples and tips can be conditioned in situ utilizing a heating stage, an ion sputtering gun, an e-beam evaporator, a tip treater, and sample exfoliation. In situ sample and tip exchange and alignment are performed in a connected UHV room temperature stage with optical access. Multisite operation without breaking vacuum is enabled by a unique quick-connect STM head design. A novel low-profile vertical transfer mechanism permits transferring the STM between room temperature and the low temperature cryostat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0212244 | DOI Listing |
Food Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Shanxi Key Laboratory of Food and Drug Safety Prevention and Control, Inspection and Testing Center of Shanxi Province, Taiyuan, Shanxi, China.
Two novel phosphodiesterase 5 (PDE-5) inhibitors were detected in pressed candy using high-performance liquid chromatography (HPLC)-diode array detection. Following extraction with acetonitrile and sonication, the compounds were isolated and purified semi-preparative liquid chromatography. Structural characterisation was achieved through high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.
View Article and Find Full Text PDFActa Orthop
January 2025
Helsinki New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
View Article and Find Full Text PDFNano Lett
January 2025
Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.
Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!