AI Article Synopsis

  • The study presents a one-step genome engineering method for making gene deletions and insertions in honey bee gut bacteria, which is simple and efficient.
  • This technique uses electroporation with plasmid DNA to integrate antibiotic resistance and fluorescent protein genes into bacterial chromosomes without needing additional recombination tools.
  • The approach shows promise for studying gene functions in various bee-associated microbes, aiding in the understanding of their role in bee health and interactions with their hosts.

Article Abstract

Unlabelled: Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont . We are also able to engineer the genomes of multiple strains of and another species, , which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, , which is an alphaproteobacterium. As expected, gene knockout in using this approach is -dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods.

Importance: Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389375PMC
http://dx.doi.org/10.1128/mbio.01392-24DOI Listing

Publication Analysis

Top Keywords

bee gut
24
genome engineering
16
bee
9
one-step genome
8
gut bacterial
8
bacterial symbionts
8
honey bee
8
gut
7
engineering
5
engineering bee
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!