Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vanadium-based compounds have attracted significant attention as cathodes for aqueous zinc metal batteries (AZMBs) because of their remarkable advantages in specific capacities. However, their low diffusion coefficient for zinc ions and structural collapse problems lead to poor rate capability and cycle stability. In this work, bilayered SrVO·0.8HO (SVOH) nanowires are first reported as a highly stable cathode material for rechargeable AZMBs. The synergistic pillaring effect of strontium ions and water molecules improves the structural stability and ion transport dynamics of vanadium-based compounds. Consequently, the SVOH cathode exhibits a high capacity of 325.6 mAh g at 50 mA g, with a capacity retention rate of 72.6% relative to the maximum specific capacity at 3.0 A g after 3000 cycles. Significantly, a unique single-nanowire device is utilized to demonstrate the excellent conductivity of the SVOH cathode directly. Additionally, the energy storage mechanism of zinc insertion and extraction is investigated using a variety of advanced in situ and ex situ analysis techniques. This method of ion intercalation to improve electrochemical performance will further promote the development of AZMBs in large-scale applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202404893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!