Bioresorbable chitosan scaffolds have shown potential for osteochondral repair applications. Thedegradation of chitosan, mediated by lysozyme and releasing glucosamine, enables progressive replacement by ingrowing tissue. Here the degradation process of a chitosan-nHA based bioresorbable scaffold was investigated for mass loss, mechanical properties and degradation products released from the scaffold when subjected to clinically relevant enzyme concentrations. The scaffold showed accelerated mass loss during the early stages of degradation but without substantial reduction in mechanical strength or structure deterioration. Although not cytotoxic, the medium in which the scaffold was degraded for over 2 weeks showed a transient decrease in mesenchymal stem cell viability, and the main degradation product (glucosamine) demonstrated a possible adverse effect on viability when added at its peak concentration. This study has implications for the design and biomedical application of chitosan scaffolds, underlining the importance of modelling degradation products to determine suitability for clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad6547DOI Listing

Publication Analysis

Top Keywords

chitosan scaffolds
8
mass loss
8
degradation products
8
degradation
6
degradation chitosan-based
4
chitosan-based osteochondral
4
osteochondral construct
4
construct points
4
points transient
4
transient cellular
4

Similar Publications

3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.

View Article and Find Full Text PDF

Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.

View Article and Find Full Text PDF

Chitosan/alginate polyelectrolyte complex hydrogels by additive manufacturing for in vitro 3D ovarian cancer modeling.

Int J Biol Macromol

January 2025

BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:

Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.

View Article and Find Full Text PDF

3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.

View Article and Find Full Text PDF

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!