The number and stacking order of layers are two important degrees of freedom that can modulate the properties of 2D van der Waals (vdW) materials. However, the layers' structures are essentially limited to the known layered 3D vdW materials. Recently, a new 2D vdW material, MoSiN, without known 3D counterparts, was synthesized by passivating the surface dangling bonds of non-layered 2D molybdenum nitride with elemental silicon, whose monolayer can be viewed as a monolayer MoN (-N-Mo-N-) sandwiched between two Si-N layers. This unique sandwich structure endows the MoSiN monolayer with many fascinating properties and intriguing applications, and the surface-passivating growth method creates the possibility of tuning the layer's structure of 2D vdW materials. Here we synthesized a series of MoSiN(MoN) structures confined in the matrix of multilayer MoSiN. These super-thick monolayers are the homologous compounds of MoSiN, which can be viewed as multilayer MoN (MoN) sandwiched between two Si-N layers. First-principles calculations show that MoSiN(MoN) monolayers have much higher Young's modulus than MoN, which is attributed to the strong Si-N bonds on the surface. Importantly, different from the semiconducting nature of the MoSiN monolayer, the MoSiN(MoN) monolayer is identified as a superconductor with a transition temperature of 9.02 K. The discovery of MoSiN(MoN) structures not only expands the family of 2D materials but also brings a new degree of freedom to tailor the structure of 2D vdW materials, which may lead to unexpected novel properties and applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299712 | PMC |
http://dx.doi.org/10.1093/nsr/nwac273 | DOI Listing |
J Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.
View Article and Find Full Text PDFACS Nano
January 2025
Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Polarized photodetectors based on anisotropic two-dimensional (2D) materials display great potential applications in communications and optoelectronics. However, the existence of high dark current, low anisotropic ratio, and response speed limits their development. In this paper, a broadband polarization angle-dependent photodetector based on the PdSe/NbSe van der Waals (vdW) heterojunction has been constructed.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!