Accumulation of plastic waste in the environment is a serious global issue. To deal with this, there is a need for improved and more efficient methods for plastic waste recycling. One approach is to depolymerize plastic using pyrolysis or chemical deconstruction followed by microbial-upcycling of the monomers into more valuable products. Microbial consortia may be able to increase stability in response to process perturbations and adapt to diverse carbon sources, but may be more likely to form biofilms that foul process equipment, increasing the challenge of harvesting the cell biomass. To better understand the relationship between bioprocess conditions, biofilm formation, and ecology within the bioreactor, in this study a previously-enriched microbial consortium (LS1_Calumet) was grown on (1) ammonium hydroxide-depolymerized polyethylene terephthalate (PET) monomers and (2) the pyrolysis products of polyethylene (PE) and polypropylene (PP). Bioreactor temperature, pH, agitation speed, and aeration were varied to determine the conditions that led to the highest production of planktonic biomass and minimal formation of biofilm. The community makeup and diversity in the planktonic and biofilm states were evaluated using 16S rRNA gene amplicon sequencing. Results showed that there was very little microbial growth on the liquid product from pyrolysis under all fermentation conditions. When grown on the chemically-deconstructed PET the highest cell density (0.69 g/L) with minimal biofilm formation was produced at 30°C, pH 7, 100 rpm agitation, and 10 sL/hr airflow. Results from 16S rRNAsequencing showed that the planktonic phase had higher observed diversity than the biofilm, and that and were the most abundant genera for all process conditions. Biofilm formation by sp. And sp. Isolates was typically lower than the full microbial community and varied based on the carbon source. Ultimately, the results indicate that biofilm formation within the bioreactor can be significantly reduced by optimizing process conditions and using pure cultures or a less diverse community, while maintaining high biomass productivity. The results of this study provide insight into methods for upcycling plastic waste and how process conditions can be used to control the formation of biofilm in bioreactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298394PMC
http://dx.doi.org/10.3389/fbioe.2024.1435695DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
plastic waste
12
process conditions
12
biofilm
9
conditions biofilm
8
formation biofilm
8
conditions
6
formation
6
process
5
biofilm mitigation
4

Similar Publications

In vitro antibacterial and antibiofilm effects of mupirocin spray against Staphylococcus pseudintermedius.

Pol J Vet Sci

December 2024

Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Korea.

Mupirocin is an effective antibiotic for infectious skin diseases. However, mupirocin is formulated as an ointment and is difficult to apply in canine systemic pyoderma. Therefore, many clinicians reformulate mupirocin off-label ointment into a spray.

View Article and Find Full Text PDF

Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important.

View Article and Find Full Text PDF

Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .

Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.

View Article and Find Full Text PDF

The rise in multidrug-resistant pathogens poses a formidable challenge in treating hospital-acquired infections, particularly those caused by . Biofilm formation is a critical factor contributing to antibiotic resistance, enhancing bacterial adherence and persistence. strains vary in virulence factors, influencing their pathogenicity and resistance profiles.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a significant global threat to public health systems, rendering antibiotics ineffective in treating infectious diseases. Combined use of bio compounds, including bacteriophages and plant extracts, is an attractive approach to controlling antibiotic resistance. In this study, the combination of phage cocktail (Isf-Pm1 and Isf-Pm2) and crude extract (AME) was investigated in controlling biofilm-forming multi-drug resistant isolates, and a phantom bladder model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!