The effect of plasticizers, namely glycerol, sorbitol, and citric acid, on the structural and mechanical properties of biodegradable films obtained from xanthan gum (XG) and starch was studied. The plasticizing effect of glycerol, sorbitol, and citric acid on XG-starch films is justified by the destruction of intermolecular contacts between starch and XG macromolecules and the redistribution of hydrogen bonds in the system as a result of the hydrotropic action of plasticizer molecules. The use of glycerol proved to be the most effective for regulating the deformation of films, while the use of sorbitol to preserve strength. The dependence of the film roughness on the type and concentration of plasticizers was characterized. The smallest values of protrusions on the surface of XG-starch films were found in the presence of sorbitol. Considering the effect of the concentration of plasticizers on the stickiness of the surface of XG-starch films and their structural and mechanical properties, 1.5 % concentration of glycerol, sorbitol and citric acid was determined as optimal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298946 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e34550 | DOI Listing |
Insects
January 2025
State Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
not only damages plant leaves directly but also causes a sooty blotch due to the honeydew secreted by the nymphs and adults. This pest is widespread and seems to be spreading from low latitude to higher latitude areas where winters are typically colder, indicating an increase in its cold tolerance. Changes in temperature help insects to anticipate the arrival of winter, allowing them to take defensive measures in advance.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
Two plasticizers with distinct properties are carefully studied in this research for their suitability in creating biocomposite edible film products. The study uncovers films' physical, tensile, and biodegradability attributes, using snakehead gelatin and ĸ-carrageenan in different concentrations, with sorbitol or glycerol as plasticizers. The biomaterials of the edible film consist of snakehead gelatin () 2% (/); ĸ-carrageenan at concentrations of 1%, 1.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.
Background: Prostate cancer (PCa), the most prevalent malignant neoplasm in males, involves complex biological mechanisms and risk factors, many of which remain unidentified. By employing a novel two-sample Mendelian randomization (MR) approach, this study aims to elucidate the causal relationships between the circulating metabolome and PCa risk, utilizing comprehensive data on genetically determined plasma metabolites and metabolite ratios.
Methods: For the MR analysis, we utilized data from the GWAS Catalog database to analyze 1,091 plasma metabolites and 309 ratios in relation to PCa outcomes within two independent GWAS datasets.
Int J Biol Macromol
January 2025
Exact Sciences and Engineering, University of Vale do Taquari -Univates, Lajeado, RS, Brazil. Electronic address:
This study evaluates the properties of starch/chitosan films (SCF) produced via the casting method, incorporating 40 % (w/w) plasticizers (glycerol and sorbitol) and various concentrations (0, 3, 5, and 10 % (w/w)) of nanoclays (Cloisite 20A, Cloisite 30B, and K-10). The effects of each nanofiller on the films were thoroughly investigated. Films containing nanoclays exhibited reduced water solubility and enhanced thermal stability compared to films without nanofillers.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!