Small molecule inhibitor binds to NOD-like receptor family pyrin domain containing 3 and prevents inflammasome activation.

iScience

Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA.

Published: August 2024

Despite recent advances in the mechanism of oxidized DNA activating NLRP3, the molecular mechanism and consequence of oxidized DNA associating with NLRP3 remains unknown. Cytosolic NLRP3 binds oxidized DNA which has been released from the mitochondria, which subsequently triggers inflammasome activation. Human glycosylase (hOGG1) repairs oxidized DNA damage which inhibits inflammasome activation. The fold of NLRP3 pyrin domain contains amino acids and a protein fold similar to hOGG1. Amino acids that enable hOGG1 to bind and cleave oxidized DNA are conserved in NLRP3. We found NLRP3 could bind and cleave oxidized guanine within mitochondrial DNA. The binding of oxidized DNA to NLRP3 was prevented by small molecule drugs which also inhibit hOGG1. These same drugs also inhibited inflammasome activation. Elucidating this mechanism will enable the design of drug memetics that treat inflammasome pathologies, illustrated herein by NLRP3 pyrin domain inhibitors which suppressed interleukin-1β (IL-1β) production in macrophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298654PMC
http://dx.doi.org/10.1016/j.isci.2024.110459DOI Listing

Publication Analysis

Top Keywords

oxidized dna
24
inflammasome activation
16
pyrin domain
12
small molecule
8
nlrp3
8
nlrp3 pyrin
8
amino acids
8
bind cleave
8
cleave oxidized
8
oxidized
7

Similar Publications

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

The prevalence of sperm DNA fragmentation (SDF) is significantly higher in males with infertility, which is often associated with oligozoospermia and hypospermia. It can also occur in patients with infertility who have normal conventional semen indicators. The etiologies involve aberrations in sperm maturation, dysregulated apoptotic processes, and heightened levels of oxidative stress.

View Article and Find Full Text PDF

Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during malaria in mice.

Methods: infection in ICR mice was used as a malaria model.

View Article and Find Full Text PDF

The Genetic and Epigenetic Toxicity of Silica Nanoparticles: An Updated Review.

Int J Nanomedicine

December 2024

Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China.

Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility.

View Article and Find Full Text PDF

The burden of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized products on human health can no longer be ignored due to the detection types and concentrations in the environment continue to increase. Environmental ozone (O) and ultraviolet A (UVA) may induce ozonation and photoaging of 6PPD to produce toxic products. However, the impact of specific environmental conditions on the aging and toxic effects of 6PPD is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!