Boron nanoparticles have numerous medical, industrial, and environmental applications as potential nanomaterials. Given the inevitable release of these particles in aquatic environments, they can combine with other pollutants like pharmaceuticals. Therefore, it is necessary to investigate their combined detrimental effects on freshwater biota. This study examined the joint impacts of Boron nitride nanoparticles (BNNPs) and Diclofenac (DCF) on freshwater microalgae Three different concentrations of BNNPs (0.1, 1, and 10 mg L) were mixed with 1 mg L of DCF and were treated with algal cells, and biochemical analyses were performed. A concentration-dependent decrease in algal cell viability was observed after a 72-h interaction period with BNNPs and their binary combinations. The maximum toxic effects were observed for the highest combination of BNNPs + DCF, i.e., 10 mg L BNNPs + 1 mg L DCF. Similarly, an increase in the oxidative stress parameters and antioxidant enzyme activity was observed, which correlated directly to the decline in cell viability. The algal cells also showed reduced photosynthetic efficiency and electron transfer rate upon interaction with BNNPs. The results of this research emphasize the importance of considering the negative consequences of emerging pollutants and their combinations with other pollutants, BNNPs, and DCF as part of a thorough evaluation of ecotoxicity in freshwater algal species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298660 | PMC |
http://dx.doi.org/10.1016/j.toxrep.2024.101696 | DOI Listing |
J Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!