Knockdown of KCNQ1OT1 Alleviates the Activation of NLRP3 Inflammasome Through miR-17-5p/TXNIP Axis in Retinal Müller Cells.

Curr Eye Res

Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.

Published: December 2024

Purpose: Diabetic retinopathy (DR) is one of the most severe and common complications caused by diabetic mellites. Inhibiting NLRP3 inflammasome activation displays a crucial therapeutic value in DR. Studies have shown that KCNQ1OT1 plays a critical role in regulating NLRP3 inflammasome activation and participates in the pathogenesis of diabetic complications. The present study aims to explore the role, and the potential mechanism of KCNQ1OT1 in regulating the activation of NLRP3 inflammasome in DR.

Methods: qRT-PCR was used to detect the expression of KCNQ1OT1, miR-17-5p, TXNIP, NLRP3, ASC, caspase-1 and IL-1β. Western blot was performed to detect the expression of NLRP3, ASC, caspase-1, IL-1β and TXNIP. Immunohistochemistry and immunostaining were performed to detect the expression of caspase-1. The levels of the inflammatory cytokine IL-1β were determined by ELISA assay. FISH was used to detect the subcellular localisation of KCNQ1OT1. Bioinformatic analysis, luciferase reporter assay and studies were performed to elucidate the mechanism of KCNQ1OT1-mediated dysfunction.

Results: The expression of KCNQ1OT1 and the activation of NLRP3 inflammasome were increased in experimental DR models. KCNQ1OT1 knockdown alleviated NLRP3 inflammasome-associated molecules expression. In addition, KCNQ1OT1 was found to be localized mainly in the cytoplasm of Müller cells and facilitated TXNIP expression by acting as a miR-17-5p sponge. KCNQ1OT1 promoted the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis.

Conclusions: In conclusion, it was found in this study that KCNQ1OT1 promoted the activation of NLRP3 inflammasome both and , which was mediated by miR-17-5p/TXNIP axis. KCNQ1OT1 might be an effective interference target for the prevention and treatment of DR.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02713683.2024.2378037DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
28
activation nlrp3
20
detect expression
12
nlrp3
10
kcnq1ot1
10
inflammasome mir-17-5p/txnip
8
mir-17-5p/txnip axis
8
müller cells
8
inflammasome activation
8
expression kcnq1ot1
8

Similar Publications

Introduction: Despite evidence of the efficacy of decursinol angelate (DA), a prescription medication derived farom traditional Chinese medicine, in alleviating inflammatory bowel disease (IBD), the precise mechanisms behind its action remain unclear.

Methods: Lipopolysaccharides (LPS) and dextran sodium sulfate (DSS) induction were used as and models of IBD, respectively, to assess the role of DA in alleviating IBD. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression levels of pro-inflammatory cytokines in mouse serum, Western blot was performed to detect the expression of TXNIP/NLRP3 pathway tight junction (TJ) proteins in colon tissues and cells, and immunohistochemistry, immunofluorescence and immunohistochemistry, immunofluorescence and qRT-PCR were used to validate the proteins related to this signaling pathway.

View Article and Find Full Text PDF

Introduction: CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated.

View Article and Find Full Text PDF

Introduction: Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined.

View Article and Find Full Text PDF

Greasing the wheels of inflammasome formation: regulation of NLRP3 function by S-linked fatty acids.

Biochem Soc Trans

January 2025

School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.

NLRP3 is an inflammasome seeding pattern recognition receptor that initiates a pro-inflammatory signalling cascade in response to changes in intracellular homeostasis that are indicative of bacterial infection or tissue damage. Several types of post-translational modification (PTM) have been identified that are added to NLRP3 to regulate its activity. Recent progress has revealed that NLRP3 is subject to a further type of PTM, S-acylation (or palmitoylation), which involves the reversible addition of long-chain fatty acids to target cysteine residues by opposing sets of enzymes.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Reactive oxygen species (ROS) stress induces NLRP3 inflammasome activation, and this, along with extracellular matrix metabolism (ECM) degradation in nucleus pulposus cells (NPCs), plays a crucial role in the progression of IDD. Daphnetin (DAP) is a biologically active phytochemical extracted from plants of the , which possesses various bioactivities, including antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!