Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatially resolved transcriptomics integrates high-throughput transcriptome measurements with preserved spatial cellular organization information. However, many technologies cannot reach single-cell resolution. We present STdGCN, a graph model leveraging single-cell RNA sequencing (scRNA-seq) as reference for cell-type deconvolution in spatial transcriptomic (ST) data. STdGCN incorporates expression profiles from scRNA-seq and spatial localization from ST data for deconvolution. Extensive benchmarking on multiple datasets demonstrates that STdGCN outperforms 17 state-of-the-art models. In a human breast cancer Visium dataset, STdGCN delineates stroma, lymphocytes, and cancer cells, aiding tumor microenvironment analysis. In human heart ST data, STdGCN identifies changes in endothelial-cardiomyocyte communications during tissue development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302295 | PMC |
http://dx.doi.org/10.1186/s13059-024-03353-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!