AI Article Synopsis

  • Extracellular vesicles (EVs) are important particles that facilitate communication between cells and are involved in various body functions, particularly in ovarian health and disorders like PCOS and endometriosis.
  • Research indicates that EVs, especially those found in follicular fluid, play significant roles in ovarian follicle development and could serve as diagnostic tools for these conditions.
  • The studies reviewed highlight specific miRNAs related to PCOS, while in endometriosis, EVs affect immune responses and could serve as potential biomarkers for understanding disease severity.

Article Abstract

Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302210PMC
http://dx.doi.org/10.1186/s13048-024-01480-7DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
polycystic ovarian
8
ovarian syndrome
8
evs
8
prevalent gynecological
8
gynecological disorders
8
commonly reported
8
peritoneal fluid
8
endometriosis lesions
8
pcos endometriosis
8

Similar Publications

Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).

View Article and Find Full Text PDF

The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion.

Trends Cell Biol

December 2024

Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF

Nano vesicles derived from edible plants ∼A new player that contributes to the function of foods∼.

Biosci Biotechnol Biochem

December 2024

Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Japan.

Nano-sized vesicles are ubiquitous in vegetables, fruits, and other edible plants. We have successfully prepared nanovesicles (NVs) from over 150 edible plants. These results suggest that the daily intake of NVs from various foods and their roles in food function are promising novel approaches for explaining the health-promoting properties of edible plants.

View Article and Find Full Text PDF

Endocytosis is an essential cellular process that uptakes substances into cells at the plasma membrane from the extracellular space and plays a major role in plant development and responses to environmental stimuli. Research has shown that plant membrane-resident proteins are endocytosed and transported into plant endosomes in response to pathogen-secreted elicitors. However, there is no conclusive experimental evidence demonstrating how secreted cytoplasmic effectors from oomycetes and fungi enter host cells during infection.

View Article and Find Full Text PDF

Epsilon Toxin from Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein.

Toxins (Basel)

December 2024

Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.

Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!