A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid nanomolar detection of cocaine in biofluids by electrochemical aptamer-based sensor with low-temperature effect for drugged driving screening. | LitMetric

Rapid nanomolar detection of cocaine in biofluids by electrochemical aptamer-based sensor with low-temperature effect for drugged driving screening.

Mikrochim Acta

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.

Published: August 2024

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06599-4DOI Listing

Publication Analysis

Top Keywords

driving screening
12
detection cocaine
8
drugged driving
8
cocaine
5
sensor
5
rapid nanomolar
4
detection
4
nanomolar detection
4
cocaine biofluids
4
biofluids electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!