Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulphidation of nZVI (S-nZVI) has shown to significantly improve the arsenic removal capacity of nZVI, concurrently modifying the sequestration mechanism. However, to better apply S-nZVI for groundwater arsenic remediation, the impact of groundwater coexisting ions on the efficacy of arsenic uptake by S-nZVI needs to be investigated. This present study evaluates the potential of S-nZVI to remove arsenic in the presence of typical groundwater coexisting ions such as Cl, HA, HCO, PO and SO through batch adsorption experiments. Individually, PO and HA had a dominant inhibition effect, while SO promoted As(III) removal by S-nZVI. Conversely, for As(V) removal, HCO and SO impeded the removal process. X-ray spectroscopic investigation suggests that the coexisting ions can either compete with arsenic for the adsorption sites, influence the S-nZVI corrosion rates and/or generate distinct corrosion products, thereby interfering with arsenic removal by S-nZVI. To investigate the cumulative effects of these ions, a 2 Fractional Factorial Design of experiments was employed, wherein the concentration of all the ions were varied simultaneously in an optimized manner, and their impact on arsenic removal by S-nZVI was observed. Our results shows that when these ions are present concurrently, PO, SO and HA still exerted a dominant influence on As(III) removal, whereas HCO was the main ions affecting As(V) removal, although the combined influence of the ions was not merely a summation of their individual effects. Overall, the finding of our study might provide valuable insight for predicting the actual performance of S-nZVI in field-scale applications for the remediation of arsenic-contaminated groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34596-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!