A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms. | LitMetric

AI Article Synopsis

  • Glioma is a common type of brain tumor, and a specific mutation can indicate a better chance of recovery.
  • The study used machine learning to analyze data from 22 studies involving over 5,000 patients to see how well it could predict the mutation.
  • Results showed that machine learning is quite accurate in predicting the mutation status, but more work is needed to make it even better for doctors to use in treating patients.

Article Abstract

Background: Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging.

Method: This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17.

Results: A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91).

Conclusion: The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571522PMC
http://dx.doi.org/10.1177/19714009241269526DOI Listing

Publication Analysis

Top Keywords

telomerase reverse
8
reverse transcriptase
8
transcriptase promoter
8
machine learning
8
learning algorithms
8
tert mutation
8
sensitivity 086
8
specificity 080
8
95%
7
predicting telomerase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!