Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia.

Biol Psychiatry

Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China. Electronic address:

Published: January 2025

Background: Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia.

Methods: To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia.

Results: The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks.

Conclusions: Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2024.07.021DOI Listing

Publication Analysis

Top Keywords

gray matter
20
matter atrophy
20
social cognitive
20
neurocognitive social
16
cognitive dysfunction
16
brain network
12
atrophy neurocognitive
12
brain
11
network localization
8
localization gray
8

Similar Publications

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.

View Article and Find Full Text PDF

Aim: Superiority illusion (SI), a cognitive bias where individuals perceive themselves as better than others, may serve as a psychological mechanism that contributes to well-being and resilience in older adults. However, the specific neural basis of SI in elderly populations remains underexplored. This study aims to identify brain regions partially associated with SI, exploring its potential role in adaptive psychological processes.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!