Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionu6pthclh4en09e26srptalpuclk3o298): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate forecast of fine particulate matter (PM) is crucial for city air pollution control, yet remains challenging due to the complex urban atmospheric chemical and physical processes. Recently deep learning has been routinely applied for better urban PM forecasts. However, their capacity to represent the spatiotemporal urban atmospheric processes remains underexplored, especially compared with traditional approaches such as chemistry-transport models (CTMs) and shallow statistical methods other than deep learning. Here we probe such urban-scale representation capacity of a spatiotemporal deep learning (STDL) model for 24-hour short-term PM forecasts at six urban stations in Rizhao, a coastal city in China. Compared with two operational CTMs and three statistical models, the STDL model shows its superiority with improvements in all five evaluation metrics, notably in root mean square error (RMSE) for forecasts at lead times within 12 h with reductions of 49.8 % and 47.8 % respectively. This demonstrates the STDL model's capacity to represent nonlinear small-scale phenomena such as street-level emissions and urban meteorology that are in general not well represented in either CTMs or shallow statistical models. This gain of small-scale representation in forecast performance decreases at increasing lead times, leading to similar RMSEs to the statistical methods (linear shallow representations) at about 12 h and to the CTMs (mesoscale representations) at 24 h. The STDL model performs especially well in winter, when complex urban physical and chemical processes dominate the frequent severe air pollution, and in moisture conditions fostering hygroscopic growth of particles. The DL-based PM forecasts align with observed trends under various humidity and wind conditions. Such investigation into the potential and limitations of deep learning representation for urban PM forecasting could hopefully inspire further fusion of distinct representations from CTMs and deep networks to break the conventional limits of short-term PM forecasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!