Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review.

Sci Total Environ

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Published: November 2024

The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175276DOI Listing

Publication Analysis

Top Keywords

agricultural soils
12
human health
12
agricultural
8
food security
8
security human
8
soil ecosystems
8
affect plant
8
plant growth
8
food chain
8
microplastic debris
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!