The transforming growth factor-β (TGF-β) signaling pathway is pivotal in inducing epithelial-mesenchymal transition (EMT) and promoting cancer metastasis. Long non-coding RNAs (lncRNAs) have emerged as significant players in these processes, yet their precise mechanisms remain elusive. Here, we demonstrate that TGF-β-upregulated lncRNA 1 (TBUR1) is significantly activated by TGF-β via Smad3/4 signaling in lung adenocarcinoma (LUAD) cells. Functionally, TBUR1 triggers EMT, enhances LUAD cell migration and invasion in vitro, and promotes metastasis in nude mice. Mechanistically, TBUR1 interacts with heterogeneous nuclear ribonucleoprotein C (hnRNPC) to stabilize GRB2 mRNA in an mA-dependent manner. Clinically, TBUR1 is upregulated in LUAD tissues and correlates with poor prognosis, highlighting its potential as a prognostic biomarker and therapeutic target for LUAD. Taken together, our findings underscore the crucial role of TBUR1 in mediating TGF-β-induced EMT and metastasis in LUAD, providing insights for future therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.217153 | DOI Listing |
Cancer Lett
September 2024
State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Soochow University Cancer Institute, Suzhou 215000, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:
The transforming growth factor-β (TGF-β) signaling pathway is pivotal in inducing epithelial-mesenchymal transition (EMT) and promoting cancer metastasis. Long non-coding RNAs (lncRNAs) have emerged as significant players in these processes, yet their precise mechanisms remain elusive. Here, we demonstrate that TGF-β-upregulated lncRNA 1 (TBUR1) is significantly activated by TGF-β via Smad3/4 signaling in lung adenocarcinoma (LUAD) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!