AI Article Synopsis

  • Researchers studied a special protein pathway in a plant called Arabidopsis that helps control the formation of small openings on leaves known as stomata.
  • There are two important signals - one that encourages stomata formation (STOMAGEN) and another that can stop it (EPIDERMAL PATTERNING FACTOR2).
  • The study found that the balance between these signals and different proteins affects how stomata develop in different parts of the plant leaf.

Article Abstract

An Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) cascade composed of YODA (YDA)-MKK4/MKK5-MPK3/MPK6 plays an essential role downstream of the ERECTA (ER)/ER-LIKE (ERL) receptor complex in regulating stomatal development in the leaf epidermis. STOMAGEN (STO), a peptide ligand produced in mesophyll cells, competes with EPIDERMAL PATTERNING FACTOR2 (EPF2) for binding ER/ERL receptors to promote stomatal formation. In this study, we found that activation of MPK3/MPK6 suppresses STO expression. Using MUTE and STO promoters that confer epidermis- and mesophyll-specific expression, respectively, we generated lines with cell-specific activation and suppression of MPK3/MPK6. The activation or suppression of MPK3/MPK6 in either epidermis or mesophyll cells is sufficient to alter stomatal differentiation. Epistatic analyses demonstrated that STO overexpression can rescue the suppression of stomatal formation conferred by the mesophyll-specific expression of the constitutively active MKK4DD or MKK5DD, but not by the epidermis-specific expression of these constitutively active MKKs. These data suggest that STO is downstream of MPK3/MPK6 in mesophyll cells, but upstream of MPK3/MPK6 in epidermal cells in stomatal development signaling. This function of the MPK3/MPK6 cascade allows it to coordinate plant epidermis development based on its activity in mesophyll cells during leaf development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648965PMC
http://dx.doi.org/10.1093/plcell/koae225DOI Listing

Publication Analysis

Top Keywords

mesophyll cells
16
stomatal development
12
mitogen-activated protein
8
stomatal formation
8
mesophyll-specific expression
8
activation suppression
8
suppression mpk3/mpk6
8
expression constitutively
8
constitutively active
8
stomatal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!