This study affords mechanistic insights into the formation mechanism of carbodiimide ions (NCN) from urea during the synthesis of LaONCN by employing the "proanion" strategy without using NH gas. It is a safer, cost-effective, and environmentally friendly approach. Urea, acting as a proanion, decomposes upon heating, facilitating conversion to NCN. This work meticulously examines the phase transitions and identifies intermediate species formed during the reaction using X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric-differential thermal analysis-mass spectrometry. The findings present a detailed mechanism in which urea initially decomposes at 140 °C, releasing HNCO, which reacts with La(OH) to immobilize NCO species on the surface of La(OH). As the temperature reaches approximately 400 °C, these NCO anions transform into NCN anions by releasing CO gas, resulting in the formation of an amorphous phase rich in NCN. Following further heating to 600 °C, LaONCN crystallizes, enhancing its crystallinity as the temperature increases. These findings elucidate the formation mechanism of LaONCN, introduce the "proanion method" for the alternative synthesis of metal (oxy)carbodiimides, and expand their potential for applications as functional materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351172 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.4c02260 | DOI Listing |
Clin Exp Med
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.
View Article and Find Full Text PDFCell Rep Med
January 2025
Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China. Electronic address:
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic progressive lung disease that is increasing in incidence. Host genetic factors are associated with NTM-PD susceptibility. However, the heritability of NTM-PD is not well understood.
View Article and Find Full Text PDFEur J Cancer
January 2025
Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany. Electronic address:
Background: Despite remarkable clinical efficacy, little is known about the system-wide immunological alterations provoked by PD1 blockade. Dynamics of quantitative immune composition and functional repertoire during PD1 blockade could delineate cohort-specific patterns of treatment response and therapy-induced toxicity.
Methods: We longitudinally assessed therapy-induced effects on the immune system in fresh whole blood using flow cytometry-based cell quantifications, accompanied by analyses of effector properties of all major immune populations upon cell-type specific stimulations.
World J Microbiol Biotechnol
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!