Antiscaling Pickering Emulsions Enabled by Amphiphilic Hairy Cellulose Nanocrystals.

ACS Appl Mater Interfaces

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: August 2024

Nucleation and growth of sparingly soluble salts, referred to as scaling, has posed substantial challenges in industrial processes that deal with multiphase flows, including enhanced oil recovery (EOR). During crude oil extraction/recovery, seawater is injected into oil reservoirs and yields water-in-oil (W/O) emulsions that may undergo calcium carbonate (CaCO) scaling. Common antiscaling macromolecules and nanoparticles have adverse environmental impacts and/or are limited to functioning only in single-phase aqueous media. Here, we develop a novel antiscaling cellulose-based nanoparticle that enables scale-resistant Pickering emulsions. Cellulose fibrils are rationally nanoengineered to yield amphiphilic hairy cellulose nanocrystals (AmHCNC), bearing hydrophilic dicarboxylate groups and hydrophobic alkyl chains on disordered cellulose chains (hairs) protruding from nanocrystal ends. The unique chemical and structural properties of AmHCNC render them the first dual functional antiscaling and emulsion stabilizing nanoparticle. AmHCNC stabilize W/O Pickering emulsions at a concentration of 1.00 wt % for 1 week while inhibiting CaCO scale formation up to 70% by mass at a supersaturation degree of ∼101 compared with the synthetic surfactant Span 80. To the best of our knowledge, this study presents the first biopolymer-based solution for the long-lasting scaling challenge in multiphase media, which may set the stage for developing sustainable scale-resistant multiphase flows in a broad spectrum of industrial sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03451DOI Listing

Publication Analysis

Top Keywords

pickering emulsions
12
amphiphilic hairy
8
hairy cellulose
8
cellulose nanocrystals
8
multiphase flows
8
antiscaling
4
antiscaling pickering
4
emulsions
4
emulsions enabled
4
enabled amphiphilic
4

Similar Publications

Pickering Emulsions Stabilized by Pea Protein Isolate-Cellulose Conjugates Prepared via the Maillard Reaction and Their Application in Active Substance Protection.

Langmuir

December 2024

Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.

The development of innovative solid particles from renewable resources possessing high biocompatibility and exceptional emulsification capabilities is crucial for stabilizing Pickering emulsions and advancing carrier systems. In this study, a pea protein isolate (PPI)-cellulose conjugate particle was prepared by the Maillard reaction. Compared to the isoelectric point of pH 4.

View Article and Find Full Text PDF

Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.

View Article and Find Full Text PDF

Insights into the oil-water interfacial adsorption properties of whey protein-γ-oryzanol Pickering emulsion gel during in vitro simulated digestion.

Food Chem

December 2024

Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Guiyang University, Guiyang 550005, China. Electronic address:

This work elucidated the digestion behavior of low-oil phase Pickering emulsion gel (LOPPEG) stabilized by whey protein isolate (WPI) -γ-Oryzanol (γO) aggregated particles and interfacial adsorption properties of its simulated digestion products. Initially, following simulated digestion, WPI-γO LOPPEG exhibited lower free fatty acid release and protein digestibility compared to WPI LOPPEG. WPI-γO LOPPEG maintained lower interfacial tension and higher interfacial thickness than WPI LOPPEG.

View Article and Find Full Text PDF

Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder.

Int J Biol Macromol

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function.

View Article and Find Full Text PDF

Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!