It is commonly thought that steady-state thermoregulatory responses are achieved within 30-90 min of compensable heat stress. However, this assumption is based on measurements of whole body heat exchange during exercise, which stabilize (equilibrate) more rapidly than deep body temperatures, especially under resting conditions. To support the design of ecologically relevant heat exposure studies, we quantified equilibrium times for deep body temperature, as indexed by rectal temperature, in young and older adults resting in the heat. We also evaluated the lag in rectal temperature equilibrium relative to whole body heat storage (direct calorimetry). Equilibrium times were estimated with data from two laboratory-based trials (NCT04353076 and NCT04348630) in which 83 adults aged 19-80 yr (34 female) were exposed to simulated heat-wave conditions for 8-9 h. When assessed at the group level, it took rectal temperature 3.3 [bootstrap 95% confidence interval: 2.9-3.9] h to reach thermal equilibrium (<0.05°C/h rate of change) in young adults exposed to 40°C, 9% relative humidity (RH). In older adults, who were exposed to a greater range of conditions (31°C-40°C, 9-45% RH), equilibrium times were longer, ranging from 4.4 [3.8-5.3] to 5.2 [4.9-5.4] h. Furthermore, rectal temperature equilibrium was delayed 0.9 [0.5-1.4] and 1.8 [0.9-2.7] h compared with whole body heat storage in young and older adults, respectively (only assessed in 40°C, 9% RH). Individual-level equilibrium times ranged from 1 to 8 h. These findings highlight the importance of ecologically relevant exposure durations in translational research assessing the physiological impacts of hot weather. Deep body (rectal) temperature took 3-5 h on average and up to 6-8 h at the individual level to reach thermal equilibrium in young and older adults resting in the heat. Furthermore, stable rectal temperatures were delayed by up to 2 h relative to the achievement of heat balance (0 kJ/min rate of heat storage). We provide the first quantification of the temporal profiles of thermal strain during extended rest in conditions simulating hot weather.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00089.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!