Spring viremia of carp virus (SVCV) has a broad fish host spectrum and is responsible for a disease that generally affects juvenile fishes with a mortality rate of up to 90%. In the absence of treatments or vaccines against SVCV, the search for prophylactic or therapeutic solutions is thus relevant, particularly to identify solutions compatible with mass vaccination. In addition to being a threat to aquaculture and ecosystems, SVCV is a unique pathogen to study virus-host interactions in the zebrafish model. Establishing the first reverse genetics system for SVCV and the design of recombinant SVCV (rSVCV) expressing fluorescent or bioluminescent proteins adds a new dimension for the study of these interactions using innovative imaging techniques. The infection by bath immersion of zebrafish larvae with rSVCV expressing mCherry allows us to define the first SVCV replication sites and the host innate immune responses using different transgenic lines of zebrafish. The fins were found as the main initial sites of infection in both zebrafish and carp, its natural host. Hence, new insights into the physiopathology of SVCV infection have been described. We report that neutrophils are recruited at the sites of infection and persist up to the death of the animal leading to an uncontrolled inflammation correlated with the expression of the pro-inflammatory cytokine IL1β. Tissue damage was observed at the site of initial replication, a likely consequence of virus-induced injury or the pro-inflammatory response. Interestingly, SVCV infection by bath immersion triggers a persistent pro-inflammatory response rather than activation of the antiviral IFN signaling pathway as observed following intravenous injection, highlighting the importance of the route of infection on the progression of pathogenicity. Thus, this model of zebrafish larvae infection by rSVCV offers new perspectives to study in detail virus-host interactions and to discover new prophylactic or therapeutic solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326706 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012328 | DOI Listing |
J Virol
November 2024
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
Unlabelled: The hypoxia signaling pathway controls hypoxia adaptation and tolerance of organisms, which is regulated by multiple mechanisms. Viral infection elicits various pathophysiological responses in the host. However, whether viral infection can affect the hypoxia response is not yet fully understood.
View Article and Find Full Text PDFMicrobiome
November 2024
Sino-Norway Joint Lab On Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Background: Evidence has accumulated to demonstrate that intestinal microbiome can inhibit viral infection. However, our knowledge of the signaling pathways and identity of specific commensal microbes that mediate the antiviral response is limited. Zebrafish have emerged as a powerful animal model for study of vertebrate-microbiota interactions.
View Article and Find Full Text PDFMicrobiome
November 2024
National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
Arch Virol
November 2024
Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
Fish Shellfish Immunol
November 2024
State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China. Electronic address:
RNF135, also known as RIPLET, plays a crucial role in facilitating RIG-I signaling in mammals. However, the function and regulatory mechanism of RNF135 in teleosts remain much to be elucidated. In this study, RNF135 homolog of black carp (bcRNF135) has been cloned and identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!