Ticks are blood ectoparasites that feed on domestic, wild animals and humans. They spread a variety of infections such as protozoa, viruses, and bacteria. Moreover, cattle reared by smallholder farmers are susceptible to ticks and tick-borne pathogens. Therefore, accurate identification of ticks and detection of tick-borne pathogens is crucial. The main aim of this study was to identify and characterize ticks and tick-borne pathogens from selected villages in Greater Letaba Municipality, Limpopo Province, using morphological and molecular techniques. A total of 233 ticks were collected from cattle and identified morphologically using appropriate morphological keys. The following tick species were identified: Amblyomma hebraeum, Hyalomma rufipes, Hyalomma truncatum, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi, and Rhipicephalus sanguineus. Rhipicephalus spp. was the most common species accounting to 73.8% of the identified ticks. The genomic DNA was extracted from the whole tick for tick identification and from midguts of the ticks for the detection of tick-borne pathogens, followed by amplification and sequencing. A total of 27 samples were positive for tick-borne pathogens: 23 samples tested positive for Theileria and four samples tested positive for Ehrlichia. Anaplasma and Rickettsial OmpB could not be detected from any of the samples. There was no obvious grouping of ticks and tick-borne pathogens on the bases of their locality. The findings of this study confirm previous reports that indicated that cattle reared by smallholder farmers harbor various ticks and tick-borne pathogens of veterinary, public health, and economic importance. Regular monitoring of tick infestations in villages around the study areas is recommended to avoid disease outbreaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300509 | PMC |
http://dx.doi.org/10.1007/s00436-024-08311-0 | DOI Listing |
Ectothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
One of the principal limitations on livestock productivity in sub-Saharan Africa is the constraining effect of infectious diseases, including tick-borne blood pathogens. Currently, diagnostic markers for these pathogens are species or genus specific, making it challenging to implement high-throughput screening methods. The aim of this study was to develop and validate a novel high-throughput diagnostic tool capable of detecting a range of important haemopathogens in livestock.
View Article and Find Full Text PDFJpn J Infect Dis
December 2024
Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Japan.
Ticks are vectors of tick-borne diseases (TBDs) between humans and wild vertebrates. The relationship between ticks, host vertebrates, and their pathogens should be investigated for the effective control of TBDs. Hence, this study aimed to detect vertebrate DNA in ticks by using molecular methods and identify the species of such ticks collected in Fukuoka Prefecture, which is located in the northern Kyushu area of Japan.
View Article and Find Full Text PDFActa Trop
December 2024
Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico. Electronic address:
PLoS Negl Trop Dis
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, P.R. China.
Background: Tick-borne infectious diseases caused by the spotted fever group Rickettsia (SFGR) have continuously emerging, with many previously unidentified SFGR species reported. The prevalence of SFGRs in northwestern China remains unclear. This study aimed to examine the prevalence of SFGRs and Anaplasma species by analyzing tick samples collected from the Ningxia region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!