Background: . Mitral transcatheter edge-to-edge repair (m-TEER) is a minimally invasive procedure for treating mitral regurgitation (MR). m-TEER is a highly technical procedure, and a steep learning curve needs to be overcome for operators to ensure optimal patient outcomes and minimise procedural complications. Training via online simulation and observation of procedures is not sufficient to establish operator confidence; thus, advanced hands-on training modalities need to be explored and developed.

Methods: . In this study, a novel anatomical simulator for m-TEER training was evaluated in comparison to a standard model. The proposed simulator resembled the anatomical features of the right and left atrium, left ventricle and mitral valve apparatus. Participants in the questionnaire (n = 18) were recruited across 4 centres in London with (n = 8) and without (n = 10) prior experience in m-TEER. Participants were asked to simulate procedures on both an idealised, routinely used simulator and the newly proposed anatomical model. The questionnaire was designed to assess (i) participants' confidence before and after training and (ii) the realism of the model in the context of the m-TEER procedure. The results of the questionnaires were collected, and statistical analysis (t-test) was performed.

Results: . Both models were equally beneficial in increasing operator confidence before and after the simulation of the intervention (P = 0.43). However, increased confidence after training with the anatomical model was recorded (P = 0.02). Participants with prior experience with m-TEER therapy were significantly more confident about the procedure after training with the anatomical model than participants who had no prior experience (P = 0.002). On average, all participants thought that the anatomical model was effective as a training simulator (P = 0.013) and should be integrated into routine training (P = 0.015)). Participants with experience thought that the anatomical model was more effective at reproducing the m-TEER procedure than the idealised model (P = 0.03).

Conclusions: . This study showed how a more realistic simulator can be used to improve the effectiveness of m-TEER procedural training. Such pilot results suggest planning future and large investigations to evaluate improvements in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299365PMC
http://dx.doi.org/10.1186/s41205-024-00230-1DOI Listing

Publication Analysis

Top Keywords

anatomical model
20
prior experience
12
training
9
mitral transcatheter
8
transcatheter edge-to-edge
8
edge-to-edge repair
8
m-teer
8
operator confidence
8
model
8
experience m-teer
8

Similar Publications

Background: Double outlet right ventricle (DORV) is a challenging congenital cardiac lesion to surgically master. We utilize computed tomography-guided-three-dimensional (3D) modeling/printing and novel in-house software to delineate anatomical relationships providing operative insight into the surgical approach. Our intent is to highlight this and showcase our technology.

View Article and Find Full Text PDF

An automatic and real-time echocardiography quality scoring system based on deep learning to improve reproducible assessment of left ventricular ejection fraction.

Quant Imaging Med Surg

January 2025

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Echocardiography can conveniently, rapidly, and economically evaluate the structure and function of the heart, and has important value in the diagnosis and evaluation of cardiovascular diseases (CVDs). However, echocardiography still exhibits significant variability in image acquisition and diagnosis, with a heavy dependency on the operator's experience. Image quality affects disease diagnosis in the later stage, and even image quality assessment still has variability in human evaluation.

View Article and Find Full Text PDF

Objective: Post-surgical lip symmetry assessment is a key indicator of cleft repair success. Traditional methods rely on distances between anatomical landmarks, which are impractical for video analysis and overlook texture and appearance. We propose an artificial intelligence (AI) approach to automate this process, analyzing lateral lip morphology for a quantitative symmetry evaluation.

View Article and Find Full Text PDF

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Endoscopic retrograde cholangiopancreatography training using a silicone simulator fabricated using a 3D printing technique (with videos).

Sci Rep

January 2025

Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Korea.

Endoscopic retrograde cholangiopancreatography (ERCP) training remains challenging. This study used 3D printing techniques to develop and optimize a portable ERCP training simulator and to implement basic and advanced practical techniques. Subsequently, we aimed to determine whether endoscopy trainees acquired proficiency in ERCP techniques and assess any improvements in their skill levels from using this model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!