Multicomponent biomolecular self-assembly is fundamental for accomplishing complex functionalities of biosystems. Self-assembling peptides, amino acids, and their conjugates serve as a versatile platform for developing biomaterials. However, the co-assembly of multiple building blocks showing synergistic interplay between individual components and producing biomaterials with emergent functional attributes is much less explored. In this study, we have formulated minimalistic co-assembled hydrogels composed of Fmoc-phenylalanine and Fmoc-lysine. The co-assembled systems display broad-spectrum antimicrobial potency, a feature absent in individual building blocks. A comprehensive biophysical analysis demonstrates the physicochemical features of the hydrogels eliciting the antibacterial response. MD simulation further reveals a unique fibrillar architecture with Fmoc-phenylalanine forming the fibril core surrounded by positively charged Fmoc-lysine surface residues, thereby enhancing the interaction with negatively charged bacterial membranes, causing membrane disruption and cell death. Thus, this study provides molecular-level insight into the emergent properties of a multicomponent system, affording an excellent paradigm for developing novel biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb00948g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!