With increasing antibiotic resistance and hospital acquired microbial infections, there has been a growing interest to explore alternate antimicrobial approaches. This is particularly challenging when aiming to protect surfaces over a large area to avoid contact mediated infection transmission. Quorum sensing (QS) inhibition has emerged as an alternate antimicrobial approach overcoming evolutionary stress driven resistance observed in antibiotic treatment. However, specific surface orientation requirements and limited work on delivery of small molecule QS inhibiting compounds have limited their widespread applicability certainly when it comes to coating large surfaces. Here, we report antimicrobial nanocomposite coatings overcoming the dependence on molecular orientation of QS inhibiting dihydropyrrol-2-ones (DHP) analogues and release small molecule analogues. In a systematic study, we developed poly(styrene--butyl acrylate)/graphene oxide (GO)/DHP analogue nanocomposite antimicrobial coatings that can be easily applied to surfaces of any length scale and studied their efficacy against . The polymer nanocomposite was designed to undergo coating formation at ambient temperature. The antimicrobial coatings exhibited DHP dose dependent antimicrobial response both in the supernatant growth media with a ∼7-log reduction in cell growth and virtually a complete inhibition in cell adhesion on the surface in the best coating compared to controls. When compared, DHP-Br coatings outperformed other DHP analogues (-F and -Ph) both in limiting the cell growth in the media and cellular adhesion on the coating surface. This is the first example of nanocomposite coatings comprising QS inhibiting compounds, and their exceptional performance is expected to pave the way for further research in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb01026d | DOI Listing |
PLoS One
December 2024
The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
Nirmatrelvir/Ritonavir, acting as an effective agent against COVID-19, has achieved considerable results in clinical studies in terms of drug efficacy. However, there is little research about its medication safety. Based on the FDA adverse event reporting system (FAERS) database, this study aims to mine the adverse reaction signals of the latest major recommended drug Nirmatrelvir/Ritonavir for the antiviral treatment of COVID-19, so as to provide a basis for safe and rational drug use.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
Objectives: Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management.
Materials And Methods: The minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining.
Pharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware DE 19716, United States.
Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea.
Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.
Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!