Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 -glycosylation sites and 25 potential -glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only - and -glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.4c00292 | DOI Listing |
Sci Rep
January 2025
Department of Medical and Surgical Sciences (DIMEC), General Pathology Building, University of Bologna, Bologna, Italy.
The β1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) which synthesizes the histo-blood group antigen Sd is highly expressed by normal colon, but it is dramatically down-regulated in colorectal cancer (CRC). High B4GALNT2 expression in CRC tissues is a marker of longer survival. The molecular bases of B4GALNT2 inhibition in CRC are largely obscure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, CHINA.
Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (P2L) platform for in situ molecular measurement and manipulation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:
Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!