Neuromuscular and vascular hamartoma (NMVH) is an infrequent gastrointestinal lesion described in human and veterinary medical literature. The histologic features of this entity are haphazardly arranged fascicles of smooth muscle, nerve fibers, scattered ganglion cells, and hemangiomatous blood vessels. Here we describe 2 putative cases of NMVH in a 1.7-y-old, intact female Anatolian mixed-breed dog and a 4-mo-old intact male Akita dog. Both animals had gastrointestinal clinical signs, including hematochezia, and on exploratory laparotomy, intussusception was confirmed. Histologic examination confirmed NMVH within the cecal wall in both cases using a panel of immunohistochemical (IHC) markers for vascular structures (CD31), smooth muscle (alpha-smooth muscle actin [α-SMA]), and nerves (glial fibrillary acidic protein [GFAP] and S100). The complete surgical excision of the lesion in both animals was considered curative without persistent clinical signs 14 mo and 12 mo, respectively, after surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529047 | PMC |
http://dx.doi.org/10.1177/10406387241266862 | DOI Listing |
Biomater Transl
November 2024
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.
Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.
View Article and Find Full Text PDFCard Fail Rev
December 2024
Department of Medicine, University of Mississippi Medical Center Jackson, MS, US.
Aldosterone is a key regulator of fluid and electrolyte balance in the body. It is often dysregulated in heart failure (HF) and is a key driver of cardiac remodelling and worse clinical outcomes. Potassium regulation is essential for normal cardiac, gastrointestinal and neuromuscular function.
View Article and Find Full Text PDFStroke
January 2025
Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (M.F., S.B., S.M., K.W., M.E., A.M., U.D., C.S.).
Background: Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory.
View Article and Find Full Text PDFBMJ Open
January 2025
College of Medicine and Dentistry, James Cook University, Queensland Research Centre for Peripheral Vascular Disease, Townsville, Queensland, Australia.
Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.
View Article and Find Full Text PDFAdv Skin Wound Care
January 2025
Keith Gordon Harding, Mb ChB, CBE, FRCGP, FRCP, FRCS, FLSW, is Professor Emeritus Cardiff University, Cardiff, Wales; Adjunct Professor Monash University Malaysia, Subang Jaya, Selangor, Malaysia; and Co-Founder and Editor in Chief of the International Wound Journal. Melissa Blow, BSc, is Principal Podiatrist, South East Wales Vascular Network, Aneurin Bevan University Health Board, Cardiff, Wales. Faye Ashton, BSc, is Vascular Research Nurse, Leicester Biomedical Research Centre, Glenfield University Hospital, Leicester, United Kingdom. David Bosanquet, MD, is Consultant Vascular Surgeon, South East Wales Vascular Network, Aneurin Bevan University Health Board. Acknowledgments: The authors acknowledge the assistance of Firstkind Ltd, Hawk House, Peregrine Business Park, Gomm Road, High Wycombe, United Kingdom HP13 7DL for sponsoring the study (grant ref: FSK-SPECKLE-001) and provided the NMES devices for the trial. Keith Harding has received payments for consulting work from Firstkind Ltd. The authors have disclosed no other financial relationships related to this article. Submitted November 28, 2023; accepted in revised form April 17, 2024.
Objective: To determine if intermittent neuromuscular electrostimulation (NMES) of the common peroneal nerve increases microvascular flow and pulsatility in and around the wound bed of patients with combined venous and arterial etiology.
Methods: Seven consenting participants presenting with mixed etiology leg ulcers participated in this study. Microvascular flow and pulsatility was measured in the wound bed and in the skin surrounding the wound using laser speckle contrast imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!