The spin scattering induced by magnetic adsorbates on graphene was studied using a combination of transport measurements on a graphene field effect transistor decorated with atomically precise nickel clusters and first principles calculations. A comparative study before and after deposition of Ni clusters unambiguously corroborated the contribution of the added scatterers. An investigation of the spin scattering parameters as a function of the applied voltage indicated a cluster-induced Elliot-Yafet like spin scattering mechanism. Density functional theory calculations were used in combination with a tight-binding model to quantify the strength of the spin-orbit coupling terms induced by the adsorbed clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01478b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!