Advances in the clinical measurement of glucagon: from diagnosis to therapy.

Diabetol Int

Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512 Japan.

Published: July 2024

AI Article Synopsis

  • Glucagon has diverse roles in the body, such as promoting energy production and suppressing appetite, but the distinction between its physiological and pharmacological functions isn’t fully understood.
  • The current Mercodia sandwich ELISA method measures glucagon more specifically than older methods, but it can be inaccurate in certain patient populations, highlighting the need for a new, more accurate testing method.
  • New dual and triagonist therapies combining glucagon with other hormone receptors are being tested and show promise for treating obesity, fatty liver, and diabetes, potentially leading to improved personalized treatment strategies.

Article Abstract

Glucagon has many functions: it promotes glucose production, fatty acid oxidation, thermogenesis, energy consumption, lipolysis, and myocardial contraction, and suppresses lipogenesis, appetite, and gastrointestinal motility. Which of these functions are physiological and which are pharmacological is not fully understood. Although the Mercodia sandwich ELISA provides significantly higher specificity of glucagon measurement than does conventional competitive RIA, it cannot provide accurate plasma glucagon values in the presence of elevated cross-reacting plasma glicentin. This occurs in patients post-pancreatectomy or bariatric surgery and in around 30% of outpatients suspected for glucose intolerance who have not had surgery. Thus, our newly developed sandwich ELISA with higher specificity and higher sensitivity than the Mercodia sandwich ELISA is needed for accurate measurements of plasma glucagon in diabetic patients. It is expected that the new sandwich ELISA will contribute to personalized medicine for diabetes by its use in clinical tests to accurately diagnose the conditions of diabetic patients in order to design better individual treatment strategies. Meanwhile, clinical trials are being conducted worldwide to apply glucagon/GLP-1 receptor dual agonists and glucagon/GLP-1/GIP receptor triagonists to the treatment of obesity, fatty liver, and diabetes. Most clinical trials have shown that both types of drugs have stronger effects on weight reduction, improving fatty liver, and glucose tolerance than do the single GLP-1 receptor agonists. Glucagon is expected to be used as a new diagnostic marker and in a new therapeutic strategy based on a true understanding of its physiological and pharmacological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291789PMC
http://dx.doi.org/10.1007/s13340-024-00704-xDOI Listing

Publication Analysis

Top Keywords

sandwich elisa
16
physiological pharmacological
8
mercodia sandwich
8
elisa higher
8
higher specificity
8
plasma glucagon
8
diabetic patients
8
diabetes clinical
8
clinical trials
8
fatty liver
8

Similar Publications

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

Statement Of Problem: Clinical studies evaluating the levels of interleukin-1 beta (IL-1β) in tears and conjunctival secretions of patients with ocular defects after using ocular prostheses are lacking. Therefore, a comparative evaluation of IL-1β levels in the defective eye before and after placement of an ocular prosthesis is needed.

Purpose: The purpose of this clinical study was to compare the microbiota and IL-1β in tears and conjunctival secretions of patients with an ocular defect after using an ocular prosthesis.

View Article and Find Full Text PDF

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Microfluidic Integration of Magnetically Functionalized Microwires for Flow Cytometry Protein Quantification.

Materials (Basel)

January 2025

Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.

A novel approach to protein quantification utilizing a microfluidic platform activated by a magnetic assembly of functionalized magnetic beads around soft magnetic capture centers is presented. Functionalized magnetic beads, known for their high surface area and facile manipulation under external magnetic fields, are injected inside microfluidic channels and immobilized magnetically on the surface of glass-coated soft magnetic microwires placed along the symmetry axis of these channels. A fluorescent (Cy5) immunomagnetic sandwich ELISA is then performed by sequentially flowing the sample and all necessary reagents in the microfluidic channels.

View Article and Find Full Text PDF

An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!