Cytidine deaminase (cytidine aminohydrolase, EC 3.5.4.5) from Escherichia coli has been purified to homogeneity through a rapid and efficient two-step procedure consisting of anion-exchange chromatography followed by preparative electrophoresis. The final preparation is homogeneous, as judged by a single band obtained by disc gel electrophoresis performed in the absence and presence of denaturing agents. The native protein molecular weight determined by gel filtration is 56 000. Sodium dodecyl sulfate disc gel electrophoresis experiments conducted upon previous incubation of the enzyme with dimethyl suberimidate suggest an oligomeric structure of two identical subunits of 33 000 molecular weight. The absorption spectrum of the protein reveals a maximum at 277 nm and a minimum at 255 nm. The isoelectric point is at pH 4.35. Amino acid analysis indicates an excess of acidic amino acid residues as well as six half-cystine residues. No interchain disulfide groups have been evidenced. According to Cleland's nomenclature, kinetic analysis shows a rapid-equilibrium random Uni-Bi mechanism. Cytidine deaminase is competitively inhibited by various nucleosides. Km values for cytidine, deoxycytidine, and 5-methylcytidine are 1.8 X 10(-4), 0.9 X 10(-4), and 12.5 X 10(-4) M, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00342a049 | DOI Listing |
Future Oncol
January 2025
Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China.
Esophageal squamous cell carcinoma (ESCC) is a severe malignant tumor of the digestive system that poses a significant threat to human health. Despite its significance, the complex molecular mechanism regulating the occurrence and development of ESCC remain elusive. The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) members constitute a pivotal subfamily of the APOBEC family that possess cytidine deaminase activity.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.
DNA methylation is an enzyme-driven epigenetic modification that must be precisely regulated to maintain cellular homeostasis. Aberrant methylation status, especially hypermethylation of the promoter sites of tumor-suppressor genes, is observed in human malignancies and is a proven target for cancer therapy. The first-generation DNA demethylating agents, azacitidine and decitabine, are widely used for treating several hematological malignancies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China. Electronic address:
The mechanisms underlying antigen receptor germline gene diversification have always been a topic of intensive study. Here, we discovered that the frequency of stem-loop sequences in the antigen receptor germline gene region is remarkably higher than the genomic background. By analyzing these stem-loop sequences' similarity and distribution patterns, we found that clustered regularly interspaced homologous stem-loop pairs (CRIHSP) are widely present on the germline genes of antigen receptors in different species.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
The gut microbiome plays an important role in the carcinogenesis of luminal gastrointestinal malignancies and response to antineoplastic therapy. Preclinical studies have suggested a role of intratumoral gammaproteobacteria in mediating response to gemcitabine-based chemotherapy in pancreatic ductal adenocarcinoma (PDAC). To our knowledge, this is the first study to evaluate the impact of the PDAC microbiome on chemotherapy response using samples from human pancreatic tumor resections.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!