The concept of a 2D cylindrical High Pass Ladder (2D c-HPL) is used in the development of this ultra high radio frequency (UHRF) volumetric head coil for 7T tuned at the Larmor frequency of 298 MHz. The architecture of the 2D c-HPL helps to overcome the challenges associated with non-uniform magnetic field distribution. The prototype consists of an individual resonating array of inductance-capacitance (LC) elements and each component is tuned to the precise frequency. The tuning of the (i) inductance, (ii) capacitance, (iii) mesh size, and (iv) coupling coefficient play critical roles to attain the desired Larmor frequency. For this proof-of-concept, the prototype of a volumetric head coil consists of a cylindrical array size of 4 ×6, with individual LC components of inductance magnitude, 98 nH and four fixed value capacitors and one tunable capacitor that allowed to achieve the desired precession frequency, . The model was tested for three different values of 269 MHz, 275 MHz and 286 MHz. The mutual coupling and the eigenfrequencies were compared through bench testing and dispersion equation. The experimental data were in good agreement (< 5%) with the theoretical eigenfrequencies from the dispersion relation. The theoretical eigenfrequencies and the experimental eigenfrequencies are in good agreement for eigenmodes (1,2), (1,3), (2,2), (2,3) and (4,3).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293480 | PMC |
http://dx.doi.org/10.1080/10739149.2023.2286376 | DOI Listing |
Radiother Oncol
December 2024
Medical Physics Unit, IRCCS, Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Italy. Electronic address:
Purpose: This study aims to investigate and compare High Dose Rate Brachytherapy (HDR-BT) with Helical Tomotherapy (HT) treatment plans. The focus is on small target volumes near radiation-sensitive organs in the ocular region, to evaluate the advantages of these techniques in treating skin cancer.
Methods: This retrospective observational analysis included patients who underwent skin cancer HDR-BT Freiburg flap treatment between 2019 and 2023.
J Imaging
December 2024
Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
In recent years, synthetic Computed Tomography (CT) images generated from Magnetic Resonance (MR) or Cone Beam Computed Tomography (CBCT) acquisitions have been shown to be comparable to real CT images in terms of dose computation for radiotherapy simulation. However, until now, there has been no independent strategy to assess the quality of each synthetic image in the absence of ground truth. In this work, we propose a Deep Learning (DL)-based framework to predict the accuracy of synthetic CT in terms of Mean Absolute Error (MAE) without the need for a ground truth (GT).
View Article and Find Full Text PDFJ Pers Med
November 2024
Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy.
. Adult medulloblastoma (AMB) patients should receive postoperative craniospinal irradiation (CSI) as a standard treatment. Volumetric intensity-modulated arc therapy (VMAT) is a promising method for CSI.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy.
The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei.
View Article and Find Full Text PDFJ Neurotrauma
December 2024
Mātai Medical Research Institute, Gisborne, New Zealand.
Athletes in collision sports frequently sustain repetitive head impacts (RHI), which, while not individually severe enough for a clinical mild traumatic brain injury (mTBI) diagnosis, can compromise neuronal organization by transferring mechanical energy to the brain. Although numerous studies target athletes with mTBI, there is a lack of longitudinal research on young collision sport participants, highlighting an unaddressed concern regarding cumulative RHI effects on brain microstructures. Therefore, this study aimed to investigate the microstructural changes in the brains' of high school rugby players due to repeated head impacts and to establish a correlation between clinical symptoms, cumulative effects of RHI exposure, and changes in the brain's microstructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!