A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Coal Rank and Coal Facies on Nanopore-Fracture Structure Heterogeneity in Middle-Rank Coal Reservoirs. | LitMetric

Considerable variations in microscopic and industrial components (ash, moisture, volatile matter, etc.) have been reported within identical coal seams. These disparities in coal quality and pore structure within the same coal seam profoundly affect the drainage of deep coalbed methane (DCBM). This study focuses on 22 coal samples collected from two wells in the Benxi Formation of the central and eastern parts of the Ordos Basin. First, the coal facies were determined for all samples using submicroscopic components, and then, the adsorption pore and seepage pore structures were studied through CO/N adsorption and mercury intrusive tests. Subsequently, the study delves into the correlation between coal rank, coal facies, and the distribution of the pore structures across various pore sizes, elucidating the primary controlling factors influenced by coal rank and coal phase. The results are as follows: (1) For a given coal seam, exhibits minimal variation among the samples, which suggests is not the primary factor affecting pore structure. Conversely, the ash content occupies the pore space, thereby revealing a negative correlation between the ash content and adsorption pore volume (PV). (2) On the basis of the texture preservation index (TPI) and gelatification index (GI), coal facies were classified into moist forest swamp facies (type A), moist herbaceous swamp facies (type B), and water-covered herbaceous swamp facies (type C). Type A is characterized by higher TPI, lower GI, and ash content, whereas type C exhibits lower TPI, higher GI, and ash content. (3) Type A samples, with the lowest ash content, display larger PV and specific surface area (SSA) compared with type B, while type C has the lowest values. Type C, with the highest vitrinite content, predominantly consists of semibright and bright coal, prone to microcracks, which results in a higher seepage PV compared with types A and B. (4) The coal facies represent variations in ash content and microscopic components, which significantly impacts both adsorption and seepage pores. Moist forest swamp facies samples are characterized by micropore development and the highest content of adsorbed gas. Herbaceous swamp facies samples display macropore development and the highest content of free gas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292632PMC
http://dx.doi.org/10.1021/acsomega.4c05179DOI Listing

Publication Analysis

Top Keywords

ash content
24
coal facies
20
swamp facies
20
coal
16
coal rank
12
rank coal
12
facies type
12
herbaceous swamp
12
facies
10
content
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!