We present the change of light absorption of cyanobacteria in response to externally applied electrical polarization. Specifically, we studied the relation between electrical polarization and changes in light absorbance for a biophotoelectrode assembly comprising boron-doped diamond as semiconducting electrode and live PCC 8005 trichomes embedded in either polysaccharide (agar) or conductive conjugated polymer (PEDOT-PSS) matrices. Our study involves the monitoring of cyanobacterial absorbance and the measurement of photocurrents at varying wavelengths of illumination for switched electric fields, i.e., using the bioelectrode either as an anode or as cathode. We observed changes in the absorbance characteristics, indicating a direct causal relationship between electrical polarization and absorbing properties of . Our finding opens up a potential avenue for optimization of the performance of biophotovoltaic devices through controlled polarization. Furthermore, our results provide fundamental insights into the wavelength-dependent behavior of a bio photovoltaic system using live cyanobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292817PMC
http://dx.doi.org/10.1021/acsomega.4c03925DOI Listing

Publication Analysis

Top Keywords

electrical polarization
12
boron-doped diamond
8
electric polarization-dependent
4
polarization-dependent absorption
4
absorption photocurrent
4
photocurrent generation
4
generation immobilized
4
immobilized boron-doped
4
diamond change
4
change light
4

Similar Publications

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:

A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.

View Article and Find Full Text PDF

12″ Wafer-Scale Mass-Manufactured Metal-Insulator-Metal Reflective Metaholograms by Nanotransfer Printing.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

The unique characteristics of metasurfaces to precisely control the amplitude, phase, and polarization of light within a thin, flat footprint make them a promising replacement for bulky optical components. However, fabrication methods of conventional metasurfaces have suffered from low throughput and high costs, limiting scalability and practical application. To address these challenges, an advanced fabrication technique is developed by combining deep-ultraviolet argon fluoride photolithography with wafer-scale nanotransfer printing to facilitate the scalable fabrication of metal-insulator-metal structures.

View Article and Find Full Text PDF

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!