InCl-Catalyzed One-Pot Synthesis of Pyrrolo/Indolo- and Benzooxazepino-Fused Quinoxalines.

ACS Omega

Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, 06800 Ankara, Turkey.

Published: July 2024

In this paper, we describe an efficient InCl-catalyzed two-component reaction of 1-(2-aminophenyl)pyrroles/indoles and 2-propargyloxybenzaldehydes for the direct synthesis of 12b-benzo[6,7]1,4-oxazepino[4,5-]pyrrolo/indolo[2,1-]quinoxalines. This high atom- and step-economical one-pot process generates three new C/N-C bonds in a single synthetic operation, resulting in the formation of new six- and seven-membered heterocyclic rings. The easy availability of the starting materials, the use of the relatively inexpensive indium catalyst, and the good substrate scope are the salient features of this strategy. The proposed mechanistic pathway involves imine formation, two consecutive cyclizations via electrophilic aromatic substitution and nucleophilic addition reactions, and the H shift step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292660PMC
http://dx.doi.org/10.1021/acsomega.4c05239DOI Listing

Publication Analysis

Top Keywords

incl-catalyzed one-pot
4
one-pot synthesis
4
synthesis pyrrolo/indolo-
4
pyrrolo/indolo- benzooxazepino-fused
4
benzooxazepino-fused quinoxalines
4
quinoxalines paper
4
paper describe
4
describe efficient
4
efficient incl-catalyzed
4
incl-catalyzed two-component
4

Similar Publications

In this work, we present an efficient strategy for the straightforward synthesis of functionalized 1,6-dihydropyridine derivatives a three-component reaction of 3-vinylchromones, aromatic aldehydes, and ammonium acetate. A tandem procedure including NH aldimine formation/Michael-type addition/opening of the pyrone ring/isomerization/6π-electrocyclization/[1,5]-H shift allows rapid access to a series of dihydropyridines bearing an -hydroxybenzoyl and a benzoyl scaffold in good yields. Readily available precursors, simple heating conditions, and operational simplicity are some highlighted advantages of this transformation.

View Article and Find Full Text PDF

Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).

View Article and Find Full Text PDF

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

Efficient Copolymerization of Methyl Methacrylate and Lactide Using Metalate Catalysts.

Macromol Rapid Commun

January 2025

Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, 75005, France.

The development of catalysts that are both robust and highly active at room temperature can often be seen as a major challenge in anionic polymerization. However, these properties are desirable for polymer synthesis because they allow for easy and sustainable production of interesting materials. Here, iron and magnesium complexes are used to form in situ generated metalate complexes that are shown to be highly active in the room temperature copolymerization of methyl methacrylate and lactide.

View Article and Find Full Text PDF

Construction and Band Gap-Regulation of Ordered Macro-Microporous Single Crystals of an Amine-Linked Covalent Organic Framework.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!