Polydopamine-Based Targeted Nanosystem for Chemo/Photothermal Therapy of Retinoblastoma in a Mouse Orthotopic Model.

Int J Nanomedicine

Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.

Published: August 2024

Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions.

Purpose: To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus.

Methods: We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted.

Results: Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility.

Conclusion: The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297587PMC
http://dx.doi.org/10.2147/IJN.S467949DOI Listing

Publication Analysis

Top Keywords

targeted nanosystem
8
chemo/photothermal therapy
8
targeting efficiency
8
fa-peg-pda-dox
5
group
5
polydopamine-based targeted
4
nanosystem chemo/photothermal
4
therapy retinoblastoma
4
retinoblastoma mouse
4
mouse orthotopic
4

Similar Publications

Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy.

Adv Sci (Weinh)

December 2024

Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments.

View Article and Find Full Text PDF

Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation.

Int J Nanomedicine

December 2024

Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.

Article Synopsis
  • Chronic inflammation is linked to various diseases and is characterized by prolonged immune cell activation, resulting in tissue damage.
  • Despite the effectiveness of current anti-inflammatory medications, they often have side effects due to non-specific targeting.
  • Nanoparticle drug delivery shows promise for targeted therapy in inflammation, but improvements are needed to specifically target different immune cell types for enhanced therapeutic effects.
View Article and Find Full Text PDF

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!