Purpose: In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well.
Methods: Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles.
Results: The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of and strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1β and TNF-α levels.
Conclusion: The experimental data shows that the novel composites can be used for the development of effective wound dressings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296363 | PMC |
http://dx.doi.org/10.2147/IJN.S466905 | DOI Listing |
Wounds
December 2024
Smith+Nephew, Watford, Hertfordshire, UK.
Background: Achievement of moisture balance can be a critical factor affecting time to closure of nonhealing wounds, and dry wounds can take much longer to heal than those with high exudate levels. Whether the goal of management is to donate moisture to the wound or control excessive fluid until the cause has been identified and addressed, choice of dressing and other wound management products can affect nursing resources, clinical outcomes, concordance, and quality of life for the patient.
Case Reports: The cases discussed illustrate differences in management approaches for dry and wet wounds and show how clinician support tools (eg, tissue type, infection/inflammation, moisture imbalance, epithelial edge advancement [TIME] clinical decision support tool) can facilitate treatment decisions.
Wounds
December 2024
Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University Hospital, Rome, Italy.
Background: Evidence-based medicine and patient-reported outcome measures (PROMs) are helpful tools in the wound care field, but few studies correlating quality of life (QoL) changes with objective changes exist.
Objective: To investigate the QoL changes following the shift from primary dressings alone to elastic compression bandages in patients with a new diagnosis of vascular skin ulcer, and to evaluate a possible correlation between objective and subjective changes.
Materials And Methods: This study included 122 patients with a new diagnosis of vascular skin ulcer, who had previously used only primary dressings alone.
Mini Rev Med Chem
January 2025
University of Bucharest, Faculty of Biology, DAFAB Department, Splaiul Independentei 91-95, Bucharest, R-050095, Romania.
The use of biomaterials in treating and managing chronic wounds represents a significant challenge in global healthcare due to the complex nature of these wounds, which are slow to heal and can lead to complications such as frequent infections and diminished quality of life for patients. Chronic wounds, which can arise from conditions like diabetes, poor circulation, and pressure sores, pose distinct challenges in wound care, necessitating the development of specialized dressings. The pathophysiology of chronic wounds is thoroughly examined in this article, with particular attention paid to the cellular and molecular defects at work and the therapeutic guidelines.
View Article and Find Full Text PDFCrit Care Resusc
December 2024
Department of Intensive Care, Alfred Health, 55 Commercial Road, Melbourne, 3181, VIC, Australia.
Objective: To describe the epidemiology and clinical features of pressure injury (PI) development in adult patients supported with extracorporeal membrane oxygenation (ECMO).
Design: Retrospective, observational, cohort study from January 2018 to May 2023.
Setting: A single-centre high-volume ECMO specialist intensive care unit (ICU).
Cureus
December 2024
Trauma and Orthopaedics, Gateshead Health National Health Services (NHS) Foundation Trust, Gateshead, GBR.
Introduction Diabetes is a rapidly growing global health concern, with the World Health Organization (WHO) estimating that 300 million adults will have diabetes by 2025. This chronic condition is associated with complications, including nephropathy, retinopathy, neuropathy, cardiovascular disease, and diabetic foot ulcers (DFUs), which can lead to amputation. Diabetic septic foot (DSF), a severe form of diabetic foot disease, is defined by the WHO as the presence of infection, ulceration, or tissue destruction in the lower limb, often accompanied by neurological abnormalities, peripheral vascular disease, and metabolic complications of diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!